

VGA Accessory Kit

SUMIT-ISM SDVO to VGA Converter for Aurora Single Board Computers

Revision A.01 December 2012

Revision	Date	Comment	
Α	10/22/2010	Initial Release	
A.01	12/3/2012	Minor updates	

FOR TECHNICAL SUPPORT PLEASE CONTACT:

support@diamondsystems.com

© Copyright 2012
Diamond Systems Corporation
555 Ellis Street
Mountain View, CA 94043 USA
Tel 1-650-810-2500
Fax 1-650-810-2525
www.diamondsystems.com

CONTENTS

1. Important Safe Handling Information	4
Features SUMIT Socket Resources	4
2.2 SUMIT Socket Resources	5
	5
3. Functional Overview	
3.1 Chrontel CH7317B SDVO to VGA Controller	
4. Board Outline and Layout	6
4.1 VGA Accessory Board Drawing	6
5. Connector List	7
6. Connector Pinout and Pin Description	8
6.1 PC/104 Connector (J1, J2)	8
6.2 SDVO Video Input (J7)	9
6.3 VGA Video Output (J8)	. 10
6.4 SUMIT-A Expansion Bus (J11)	. 11
7. Installation and configuration	
7.1 Attaching the VGA Accessory Board to the Aurora SBC	. 12
8. Specifications	

1. IMPORTANT SAFE HANDLING INFORMATION

WARNING!

ESD-Sensitive Electronic Equipment

Observe ESD-safe handling procedures when working with this product.

Always use this product in a properly grounded work area and wear appropriate ESD-preventive clothing and/or accessories.

Always store this product in ESD-protective packaging when not in use.

Safe Handling Precautions

The ACC-VGA-03 board contains a high density connector with many connections to sensitive electronic components. This creates many opportunities for accidental damage during handling, installation and connection to other equipment. The list here describes common causes of failure found on boards returned to Diamond Systems for repair. This information is provided as a source of advice to help you prevent damaging your Diamond (or any vendor's) embedded computer boards.

ESD damage – This type of damage is usually almost impossible to detect, because there is no visual sign of failure or damage. The symptom is that the board eventually simply stops working, because some component becomes defective. Usually the failure can be identified and the chip can be replaced. To prevent ESD damage, always follow proper ESD-prevention practices when handling computer boards.

Damage during handling or storage – On some boards we have noticed physical damage from mishandling. A common observation is that a screwdriver slipped while installing the board, causing a gouge in the PCB surface and cutting signal traces or damaging components.

Another common observation is damaged board corners, indicating the board was dropped. This may or may not cause damage to the circuitry, depending on what is near the corner. Most of our boards are designed with at least 25 mils clearance between the board edge and any component pad, and ground / power planes are at least 20 mils from the edge to avoid possible shorting from this type of damage. However these design rules are not sufficient to prevent damage in all situations.

A third cause of failure is when a metal screwdriver tip slips, or a screw drops onto the board while it is powered on, causing a short between a power pin and a signal pin on a component. This can cause overvoltage / power supply problems described below. To avoid this type of failure, only perform assembly operations when the system is powered off.

Sometimes boards are stored in racks with slots that grip the edge of the board. This is a common practice for board manufacturers. However our boards are generally very dense, and if the board has components very close to the board edge, they can be damaged or even knocked off the board when the board tilts back in the rack. Diamond recommends that all our boards be stored only in individual ESD-safe packaging. If multiple boards are stored together, they should be contained in bins with dividers between boards. Do not pile boards on top of each other or cram too many boards into a small location. This can cause damage to connector pins or fragile components.

Power supply wired backwards – Our power supplies and boards are not designed to withstand a reverse power supply connection. This will destroy each IC that is connected to the power supply (i.e. almost all ICs). In this case the board will most likely will be unrepairable and must be replaced. A chip destroyed by reverse power or by excessive power will often have a visible hole on the top or show some deformation on the top surface due to vaporization inside the package. **Check twice before applying power!**

Overvoltage on analog input – If a voltage applied to an analog input exceeds the design specification of the board, the input multiplexor and/or parts behind it can be damaged. Most of our boards will withstand an erroneous connection of up to ± 35 V on the analog inputs, even when the board is powered off, but not all boards, and not in all conditions.

Overvoltage on analog output – If an analog output is accidentally connected to another output signal or a power supply voltage, the output can be damaged. On most of our boards, a short circuit to ground on an analog output will not cause trouble.

Overvoltage on digital I/O line – If a digital I/O signal is connected to a voltage above the maximum specified voltage, the digital circuitry can be damaged. On most of our boards the acceptable range of voltages connected to digital I/O signals is 0-5V, and they can withstand about 0.5V beyond that (-0.5 to 5.5V) before being damaged. However logic signals at 12V and even 24V are common, and if one of these is connected to a 5V logic chip, the chip will be damaged, and the damage could even extend past that chip to others in the circuit.

2. INTRODUCTION

The VGA Accessory Kit is designed for use with Aurora single board computers to convert Aurora's SDVO output to VGA output. The Kit contains a VGA accessory board, part number ACC-VGA-03, and VGA cable, part number 6891084. The ACC-VGA-03 accessory board mounts directly on top of the Aurora SBC, connecting directly to Aurora's SDVO connector.

Designed for Outdoor Applications

The VGA accessory board was designed with outdoor applications in mind. It is ideal for access point applications or a wide range of other embedded computing applications.

Rugged and Robust

Extended temperature operation of -40°C to +85°C is tested and guaranteed.

Expandability

The VGA accessory board has both SUMIT-A and PC/104 (ISA) stackthrough expandability. Therefore it can be used in legacy PC/104 stacks as well as new SUMIT-based architectures.

2.1 Features

- ♦ SDVO to VGA Converter
- ♦ SUMIT-A and PC/104 (ISA) stackable expansion
- ♦ Extremely rugged -40°C to +85°C (-40°F to +185°F) operating temperature

2.2 SUMIT Socket Resources

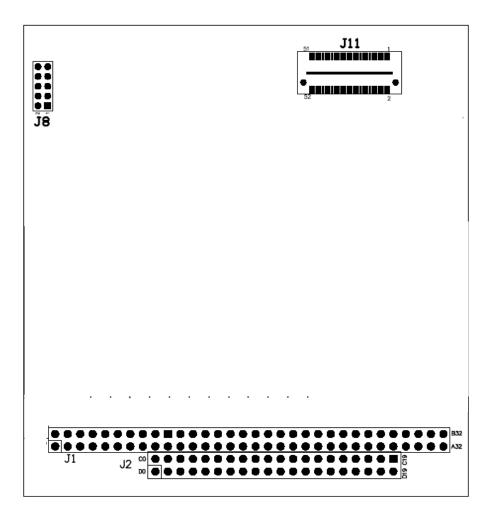
The SUMIT-A expansion socket uses the resources indicated in the table below. For further details on the SUMIT expansion standard, visit SFF-SIG.org/sumit.html.

SUMIT Resources				
	SUMIT A	SUMIT B		
PCle x1	1			
PCle x4				
USB	4			
ExpressCard	-	er.		
LPC	0_0			
SPI /uWire	-			
SMBus/ I2C				
+12V	s=8			
+5V	V			
+5Vsb	-			
+3.3V	V			

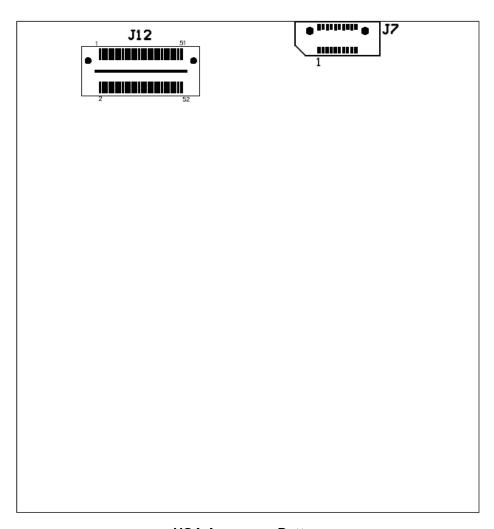
3. FUNCTIONAL OVERVIEW

The SDVO to VGA converter takes an externally provided SDVO input and converts it to an analog VGA output. It is designed for use with Diamond's Aurora single board computer.

3.1 Chrontel CH7317B SDVO to VGA Controller


- Supporting analog RGB outputs for a display monitor
- ♦ Supporting maximum pixel rate of 165MP/s or graphics resolutions up to 1920x1200
- ♦ High-speed SDVO (1G~2Gbps) AC-coupled serial differential RGB inputs
- ♦ Supporting monitor connection detection

4. BOARD OUTLINE AND LAYOUT


4.1 VGA Accessory Board Drawing

The following diagram shows locations for all connectors identified in the next section.

VGA Accessory Top

VGA Accessory Bottom

5. CONNECTOR LIST

The following table summarizes the functions of the VGA accessory board's interface connectors. Please refer to the drawings in Section 4 for the locations of these connectors. Signal functions relating to all of the board's interface connectors are discussed in greater detail in Section 6 of this document. Other connectors and jumper blocks on the accessory board are reserved for Diamond's use only.

Connector	Function
J1	64 pin 40 ISA connector
J2	40 pin ISA connector
J7	SDVO video input connector
J8	VGA output connector
J11	SUMIT-A connector top side
J12	SUMIT-A connector bottom side

6. CONNECTOR PINOUT AND PIN DESCRIPTION

6.1 PC/104 Connector (J1, J2)

The PC/104 bus is essentially identical to the ISA bus except for the physical design. It specifies two pin and socket connectors for the bus signals. A 64-pin connector, J1, incorporates the 64-pin 8-bit bus connector signals, and a 40-pin connector, J2, incorporates the 36-pin 16-bit bus connector signals. The additional pins on the PC/104 connectors are used as ground or key pins. The female sockets on the top of the board enable stacking another PC/104 board on top of Corona, while the male pins on the bottom enable the board to plug into another board below it. The PC/104 bus connector pinout and signal functions are defined by the latest version of the PC/104 Consortium's "PC/104 Specification" (see http://www.pc104.org). In the pinout figures below, the tops correspond to the left edge of the connector when the board is viewed from the primary side (side with the mini-PCI connector and the female end of the PC/104 connector) and the board is oriented so that the PC/104 connectors are along the bottom edge of the board.

J2: PC/104	16-bit bus	connector
------------	------------	-----------

,	, w		
IOCHK-	A1	B1	Ground
SD7	A2	B2	RESET
SD6	А3	В3	+5V
SD5	A4	B4	IRQ9
SD4	A5	B5	-5V
SD3	A6	B6	DRQ2
SD2	A7	В7	-12V
SD1	A8	B8	OWS-
SD0	A9	В9	+12V
IOCHRDY	A10	B10	KEY
AEN	A11	B11	SMEMW-W
SA19	A12	B12	SMEMR-
SA18	A13	B13	IOW-
SA17	A14	B14	IOR-
SA16	A15	B15	DACK3-
SA15	A16	B16	DRQ3
SA14	A17	B17	DACK1-
SA13	A18	B18	DRQ1
SA12	A19	B19	REFRESH-
SA11	A20	B20	SYSCLK
SA10	A21	B21	IRQ7
SA9	A22	B22	IRQ6
SA8	A23	B23	IRQ5
SA7	A24	B24	IRQ4
SA6	A25	B25	IRQ3
SA5	A26	B26	DACK2-
SA4	A27	B27	TC
SA3	A28	B28	BALE
SA2	A29	B29	+5V
SA1	A30	B30	OSC
SA0	A31	B31	Ground
Ground	A32	B32	Ground

J1: PC/104 8-bit bus connector

Ground	C0	D0	Ground
SBHE-	C1	D1	MEMCS16
LA23	C2	D2	IOCS16-
LA22	C3	D3	IRQ10
LA21	C4	D4	IRQ11
LA20	C5	D5	IRQ12
LA19	C6	D6	IRQ15
LA18	C7	D7	IRQ14
LA17	C8	D8	DACK0-
MEMR-	C9	D9	DRQ0
MEMW-	C10	D10	DACK5-
SD8	C11	D11	DRQ5
SD9	C12	D12	DACK6-
SD10	C13	D13	DRQ6
SD11	C14	D14	DACK7-
SD12	C15	D15	DRQ7
SD13	C16	D16	+5V
SD14	C17	D17	MASTER-
SD15	C18	D18	Ground
KEY	C19	D19	Ground

Connector type:

Connectors J1 and J2 provide a standard PC/104 ISA stackable expansion bus. There is no PC/104 functionality on Corona. This board simply passes-through the signals of the PC/104 bus.

6.2 SDVO Video Input (J7)

Connector J7 is used to bring SDVO video in for the purposes of conversion to VGA output. This connector mates to a corresponding connector on Diamond's Aurora single board computer.

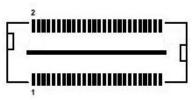
1	SDVO_B_BLUE#		
2	BUF_PLT_RST#		
3	SDVO_B_BLUE		
4	Ground		
5	Ground		
6	SDVO_B_GREEN#		
7	SDVO_CTRLCLK		
8	SDVO_B_GREEN		
9	SDVO_CTRLDATA		
10	10 Ground		
11 Ground			
12	SDVO_B_CLK_N		
13	+3.3V		
14 SDVO_B_CLK_P			
15	+3.3V		
16	16 Ground		
17	17 +5V		
18	SDVO_B_RED#		
19	+5V		
20	SDVO_B_RED		

Connector type: 20 pin Samtec stacking connector ERF8-010-07.0-L-DV-TR

6.3 VGA Video Output (J8)

Connector J8 is used to connect a VGA monitor. Although the DDC serial detection pins are present, a +5V power supply is not provided, and the legacy "Monitor ID" pins are also not used. Diamond Systems' cable number 6981084 mates with this connector.

RED	1	2	Ground
GREEN	3	4	Key
BLUE	5	6	Ground
HSYNC	7	8	DDC-Data
VSYNC	9	10	DDC-Clock


Connector type: 2x5 standard 2mm dual row straight pin header with gold flash plating

6.4 SUMIT-A Expansion Bus (J11)

The SUMIT-A stackable bus is a 52-pin connector. The VGA accessory board uses the following SUMIT bus functions:

• 1 PCIe x1 lane

The signal assignments of the SUMIT-A connector appear in below. Note: For more information on the SUMIT specification, visit the SFF-SIG website at http://www.sff-sig.org.

			•
+5VSB	1	2	+12V
3.3V	3	4	SMB/I2C_DATA
3.3V	5	6	SMB/I2C_CLK
EXPCD_REQ#	7	8	SMB/I2C_ALERT#
EXPCD_PRSNT#	9	10	SPI/uWire_DO
USB_OC#	11	12	SPI/uWire_DI
Reserved	13	14	SPI/uWire_CLK
+5V	15	16	SPI/uWire_CS0#
USB3+	17	18	SPI/uWire_CS1#
USB3-	19	20	Reserved
+5V	21	22	LPC_DRQ
USB2+	23	24	LPC_AD0
USB2-	25	26	LPC_AD1
+5V	27	28	LPC_AD2
USB1+	29	30	LPC_AD3
USB1-	31	32	LPC_FRAME#
+5V	33	34	SERIRQ#
USB0+	35	36	LPC_PRSNT# / Ground
USB0-	37	38	CLK_33MHz
Ground	39	40	Ground
A_PETp0	41	42	A_PERp0
A)PETn0	43	44	A_PERn0
Ground	45	46	APRSNT# / Ground
PERST#	47	48	A_CLKp
WAKE#	49	50	A_CLKn
+5V	51	52	Ground

7. INSTALLATION AND CONFIGURATION

7.1 Attaching the VGA Accessory Board to the Aurora SBC

Install the four 0.3" 4-40 spacers that are included with the Aurora SBC on the four mounting posts attached to Aurora in the four corners of the SBC.

Align the VGA accessory board over the top of the Aurora SBC so that the PC/104 and SUMIT-A connectors on the accessory board align with the mating connectors on Aurora.

Push evenly on all four sides of the accessory board until it firmly seats onto the Aurora SBC.

Secure the accessory board to Aurora with four screws (4-40 x ½" pan head) inserted into the four mounting holes on the corners of the board.

Connect the VGA cable, part number 6891084, between connector J8 and the desired VGA display.

8. SPECIFICATIONS

General			
Graphics	VGA, 1920 x 1200 maximum resolution		
Mass storage	1 2.5" SATA solid state disk mounting location		
Evnancian	SUMIT-A stackable expansion		
Expansion	PC/104 (ISA) stackable expansion		
Power supply	+5VDC ±5%		
- Fower supply	+3.3VDC ±5%		
Power consumption	1.8W maximum		
Dimensions	3.55 x 3.775 in. (90 x 96 mm)		
Operating temperature	-40°C to +85°C (-40°F to +185°F)		
Weight	2.0oz (58g)		
RoHS	Compliant		